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ABSTRACT

Microalgae have been classified as the most primitive plant species and the ability to grow rapidly makes it very
suitable for biomass cultivation by using different technologies over the past years. Microalgal biomass can be used
for various productions such as biofuels, food, supplements, and more as it is categorized as environmentally friendly
throughout the cultivation process. Nutrients play one of the most important roles in cultivating microalgae besides other
factors such as temperature, pH, salinity, inorganic carbon, oxygen, light intensity, and carbon dioxide availability. The
technology has become much more advanced in cultivating microalgae for maximizing lipid or biomass production. In
this paper, we reviewed the technologies used for media optimization of microalgae growth along with the advancement
in technology, starting from traditional techniques to more advanced techniques employing statistical or mathematical
analysis. The traditional media optimization technique is known as the classical one-factor-at-a-time (OFAT) technique
which is sub-grouped into three types of experiments—removal experiment, supplement experiment, and replacement
experiment. The advanced technique for the optimization of medium components concentration discussed in this paper
includes Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Genetic Algorithm (GA).

Keywords: Advanced technique, ANN, Biomass, GA, Optimization, Media technology advancement, Microalgae, Nutrient,
Traditional technique, RSM

1. Introduction

Microalgae has recently captured worldwide inter-
est due to its substantial application in pharmaceuti-
cals, nutraceutical, bioremediation, and agricultural
industries as well as a new alternative for renewable
energy sources [1, 2]. The rapid growth of the world’s
population has continuously driven the demand for
energy resources such as fossil fuels and food sup-
plies from agricultural activities [3]. The extensive
utilization of land and fossil fuels has contributed
to the increment of atmospheric greenhouse gases

which is the predominant cause of global climate
changes. This overexploitation can be mitigated by
the creation of biofuels and bioproducts from microal-
gae [4, 5]. As well as Microalgae have manifested
various potential as a protein source to satisfy the
population’s dietary requirement for a more sustain-
able food supply. These promising protein sources can
be cultivated in a relatively shorter time with less
environmental impact. However, a vast amount of
microalgae biomass is required to fulfil the demands
with the prospect of cost-saving as the main objective.
This mass production can be accomplished with the
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application of advanced technique in culture media
optimization [6, 7].

The choice of technology used in media optimiza-
tion plays a crucial role in determining the effective-
ness of yielding microalgae. Algae may be cultured
through various methods, starting from technologi-
cally advanced solutions where the process is thor-
oughly monitored and controlled and end in less pre-
dictable techniques based on the use of open tanks.
The technological and economic effectiveness of the
process is significantly affected by the source of nu-
trients [8]. Subramanian et al. [9] and Sun et al. [10]
also mentioned that the microalgae are adapting to
the culturing environment by evolving their systems
and metabolic pathways to produce biomass with less
conversion efficiency. As a substitution, genetic and
metabolic engineering technologies of microalgae
are considered to create pathways for efficient mi-
croalgae production platforms such as Calvin-Benson-
Bassham (CBB) cycle, Embden-Meyerhof Pathway
(EMP), Pentose Phosphate (PP) pathway, and Tricar-
boxylic Acid (TCA) cycle [11, 12].

Before the 1970s, media optimization was car-
ried out by using classical methods, which were
expensive, time-consuming, and involved multiple
experiments with compromised accuracy. Neverthe-
less, the emergence of modern mathematical and
statistical techniques has led to media optimization
approaches that are more vibrant, effective, effi-
cient, economical, and robust in giving the results
[13]. Multiple strategies can be adopted during the
creation of the optimization model. The strategies
include the traditional one-factor-at-a-time (OFAT)
techniques and advanced techniques. Advanced tech-
niques which consist of statistical or mathematical-
based optimization, involve screening of significant
components through Taguchi and Plakett Burman
Design (PBD). Apart from that, the advanced technol-
ogy also optimizes component concentration through
Response Surface Methodology (RSM), Artificial Neu-
ral Network (ANN), and Genetic Algorithm (GA)
[14]. This review focuses on a selection of sophis-
ticated strategies that may be used to optimize the
medium for microalgae cultivation. To enhance the
understanding, the significance of microalgae, delve
into the nutritional needs for microalgae cultivation,
and give a thorough description of sophisticated op-
timization approaches based on mathematics were
discussed.

1.1. Microalgae

Microalgae are photosynthetic organisms that are
considered the most ancient form of plants due to
their single-cell structure and the ability to carry out

photosynthesis using the same mechanism as higher
plants [15]. The nature of microalgae’s simple cellu-
lar structure has appointed this organism as one of the
best solar converters [16]. They have a broad toler-
ance range for various environmental factors such as
temperatures, salinities, pH values and light intensity
[17]. Microalgae thrive within water bodies such as
lakes, ponds, rivers, and wastewater. The nature of
this habitat allows microalgae to have better access
to water, carbon dioxide and other required nutrients
[18]. During their peak growth phase, microalgae
biomass doubles up every 24 h, and even as quickly
as every 3.5 h as reported by [19].

Microalgae have been receiving attention for their
various direct and indirect uses that are beneficial
in multiple fields. Microalgae biomass can either be
directly incorporated into human food, animal fodder
and food supplements or be manipulated to produce
biofuels and bioproducts as shown in Fig. 1 [20].
These organisms are very efficient in sequestration of
atmospheric carbon dioxide (CO2) and nutrient uti-
lization besides having a rich source of lipids within
their cell structure that can be used as biofuel feed-
stock [2]. As compared to terrestrial oilseed crops,
greater quantities of oil per unit area can be generated
from microalgae. Microalgae fuel can be one of the
alternatives for producing sufficient automotive fuel
to replace the current demand for petrol and diesel.
Other than biofuels, microalgae also provide a wide
range of bioproducts such as poly unsaturated fatty
acids, antioxidants, proteins, and pigments for the
biotechnology industry [21].

1.2. Nutrient requirement for microalgae

The growth of microalgae is influenced by several
environmental conditions, including temperature,
pH, salinity, inorganic carbon, oxygen, light inten-
sity, carbon dioxide, and nutrient availability. The
specific requirements for each species may differ.
Every individual microalgae species has a special-
ized nutritional need that is necessary for its optimal
growth and development [22]. Microalgae growth
development requires macronutrients such as nitro-
gen, phosphorus, sodium, magnesium, calcium, and
potassium, as well as micronutrients including molyb-
denum, manganese, boron, copper, iron, and zinc,
along with trace elements [23]. Despite having differ-
ent nutritional needs, the backbone of all microalgae
species is made up of carbon, nitrogen, and phos-
phorus. Carbon is an important macronutrient in
the culture medium of microalgae as it provides en-
ergy for microorganisms [24]. According to Prasad
et al. [25], carbon is required for the photosyn-
thesis process, therefore it has a significant role in
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Fig. 1. The various utilization of microalgae biomass [20].

microalgal growth and reproduction. Singh et al.
[26] added that carbon is also essential to produce
metabolites. This macronutrient is utilized in dif-
ferent forms depending on the type of microalgal
growth. Autotrophic growth uses inorganic carbons
such as carbon dioxide (CO2), carbonate, and bi-
carbonate while heterotrophic growth makes use of
carbon in its organic form, for example, glycerol,
acetate, and glucose.

Nitrogen, like carbon, plays a crucial role in the
development of microalgae, biomass productivity,
and the generation of metabolites. Because of its
fundamental function as a constituent in proteins
and nucleic acids, the lack of nitrogen in the cul-
ture medium of microalgae suppresses the protein
synthesis required for activities that contribute to
biomass production such as cellular division [27].
Ragaza et al. [28] stated that these microorganisms
utilize nitrogen in their inorganic form such as ni-
trates. Also, that urea is an alternative nitrogen source
that is much cheaper and suitable to use for mi-
croalgal cultivation. Besides carbon and nitrogen,
phosphorus is another important medium component
for microalgae culture. Phosphorus is one of the vi-
tal elements for nucleic acid production as it makes
up the backbone of DNA and RNA. Additionally, it
plays a crucial role in ATP, which is a vital com-
ponent of energy-supplying molecules. Furthermore,

phosphorus is present in microbial cell membranes as
an essential constituent of phospholipids. Microalgae
absorb inorganic phosphorus, namely phosphates.

Nitrogen and phosphorus are the two components
of culture media for microalgae that are closely linked
together in previous studies. According to Yaakob
et al. [29], the growth and metabolism of algal cells
are heavily dependent on nitrogen and phosphate,
whereby these two important macronutrients make
up about 10 to 20% of microalgae biomass. A lack of
these two nutrients in the culture medium would lead
to a decrease in the development of microalgae, while
simultaneously lead to the accumulation of lipids
[30]. Valenzuela et al. [31] and Wang et al. [32]
stated in their studies on Phaeodactylum tricornutum
and Chlamydomonas reinhardtii respectively. Another
study explained the decline in the growth of Chlorella
vulgaris and Pseudochoricystis ellipsoidea was noted
during nitrogen and phosphorus decreased. In
the same context [33] reported that when the
concentration of nitrogen and phosphorus are
insufficient, the metabolism of lipids would shift to
lipid storage from the synthesis of membrane lipids.

Other than macronutrients, micronutrients are also
important as one of the medium components for mi-
croalgae culture. According to Khan et al. [34], the
small amount of these required micronutrients is able
to alter the enzymatic activities in algal cells, hence
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Fig. 2. The approaches used in media optimization [38].

affecting the growth of the microalgae. Maltsev et al.
[35] stated that there are six essential trace metals
responsible for various metabolic functions in algae
which are iron, manganese, cobalt, zinc, copper, and
nickel. The limited supply of these trace metals will
suppress microalgae growth while the excess metal
concentration in culture media may prevent growth,
reduce antioxidants, disturb the photosynthesis pro-
cess, and impair the cell membrane. Iron deficiency
resulted in the downregulation of enzymes such as
β-carbonic anhydrase and ribulose-1,5-bisphosphate
carboxylase (RuBisCO) [36].

1.3. Media optimization techniques

Media optimization techniques have evolved from
the traditional experimental techniques to a more
advanced statistical approach in order to enhance
microalgae biomass or metabolites production [37].
Fig. 2 lists the traditional and advanced techniques
that are discussed in this paper [38].

1.4. Traditional techniques

The conventional method for optimizing media is
referred to as the one-factor-at-a-time (OFAT) experi-
ment. In this experiment, a single element or variable
is manipulated at a time while the other compo-
nents are held constant. According to Singh et al.
[26], OFAT can be classified into three sub-groups re-
moval experiment, supplementation experiment, and
replacement experiment. These experiments differ in

how they are being conducted but the purpose of
these experiments is the same, which is to evaluate
the effects of medium components on the produc-
tion of metabolites or specific products of interest.
In removal experiments, the medium components are
taken out from the composition one by one. The effect
of the removal on either the secondary metabolite
production or the product of interest will be observed
after a period of incubation. The supplement exper-
iment is performed by introducing various types of
carbon and nitrogen supplements into the culture
media. As for the replacement experiment, it is con-
tinuous to the supplement experiment, whereby the
supplement that results in the desired effects will be
focused as the main source of carbon or nitrogen.

This traditional approach is preferred by many for
medium composition as it is easy to practice. The
simplicity of experiments enables the analysis of re-
sults without employing high-end statistical analysis
or programs [39]. Although it is convenient to prac-
tice, these classical OFAT experiments have their
own drawbacks. OFAT experiments would be time-
consuming and burdensome for experiments with
many components that need to be optimized. It is also
difficult to estimate the interaction between multiple
components of the media when these components are
varied and independent of each other [40].

1.5. Advanced techniques

1.5.1. Response surface methodology (RSM)
Response surface methodology (RSM) is a

mathematical approach that consists of statistical
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experimental design and multiple regression analysis.
RSM employs factorial designs for the optimization
of the process that leads to metabolites production.
The general purpose of RSM is to determine the best
formulation under a group of constrained equations
[41, 42]. In addition, this advanced technique is also
utilized for the optimization of the media formulation
and fermentation process. RSM is not only a simple,
efficient, and time-saving model, but this technique
also has the ability to estimate the enhancement of
processes linked to the production of metabolites
[43]. Pereira et al. [44] added that the employment
of RSM in the medium optimization process has
removed the disadvantages faced by depending on
the traditional single factor optimization process.
There are three phases or basic steps that take place
when RSM is being conducted, beginning with the
screening of factors that exert significant response,
conducting suitable experiments to determine the
optimum operating condition and ending with
optimization of quadratic regression model using
canonical regression analysis method [45]. The
study by Radzun et al. [6] employed an automated
nutrient screening system that is able to determine
the optimum nutrient conditions for a broad range
of microalgae species. This study consists of an
automated two-phase screening process whereby the
optimization of nitrogen and phosphorus was done as
the first step followed by the optimization of all other
components. After the screening process, the highest
growth rate was determined by an incomplete fac-
torial Box-Behnken analysis. Each microalgae strain
in this study was analysed for a total of 246 trials.
Other study by [46] proved that RSM can optimize
the medium composition for green microalgae,
Tetraselmis suecica. In this study, the types of carbon
and nitrogen source that heavily influence the growth
of the microalgae were determined and optimizes
using the RSM technique. The optimal medium for
the cultivation of T. suecica is made up of 5.78 g/L of
glucose, 9 g/L of peptone, 4.48 g/L of yeast extract,
and 3.01 g/L of meat extract. It is also reported that
the cell yield from this optimized medium was about
three times greater than the yield obtained from
the non-optimized medium. Skorupskaite et al. [47]
also reported that the optimization of Chlorella sp.
biomass using RSM was able to harvest 2.41 g/L
biomass concentration in the media containing
0.114 g/L nitrogen and 2.70 g/L technical glycerol.

1.5.2. Artificial neural network (ANN)
An Artificial Neural Network (ANN) is a computa-

tional model, drawing inspiration from the structure
and operation of biological neural networks. Fre-

quently employed for forecasting multiple future
steps across various tasks, neural networks can also
serve as controllers themselves or adjust parame-
ters for conventional controllers [48]. ANNs can be
described as a mathematical understanding of the
neurological functioning of the human brain. They
emulate the brain’s learning process by arithmetically
modelling the network structure of interconnected
nerve cells. In most cases, ANN represents an adap-
tive system that changes its structure according to
external or internal information that flows through
the network during the learning phase [49]. They
are simply “trained” using a data set and then ap-
plied to predict new data points. Prior knowledge
of equations is not essential for this training as the
network and system remain as a black box to the user.
The phrase "black box" is used to describe the lack
of transparency and interpretability of the underly-
ing mechanisms of ANNs. Although the network is
capable of making precise forecasts, comprehending
the precise process by which it reached a particular
prediction is sometimes difficult [74].

ANN is well suited for medium design, as it gener-
ates a large amount of data that often contains the
hidden pattern [50]. The architecture of the ANN
consists of three layers of information known as neu-
rons: a layer of “input” units is connected to a layer
of “hidden” units, which is further connected to a
layer of “output” units. The “learning conditions” of
neural networks are classified into three groups as
supervised (associative), where the neural network is
trained by giving it input and output experimental
data. Unsupervised (self-organization) in which the
output unit is trained to respond against clusters of
patterns within the input. Different from the super-
vised, there is no prior set of groups into which the
patterns are to be classified; rather the system must
develop its own representation of the input stimuli.
Reinforcement where learning may be considered as
an intermediate form of the above two classes of
learning. The learning system categorized its action
as good or bad based on the environmental response
and accordingly adjusts its parameters. Generally, the
parameter adjustment is continued until the attain-
ment of an equilibrium state [51].

ANNs have been widely applied with great success
for system designing, modelling, optimization, and
control mainly due to their capacity to learn filter
noisy signals and generalize information through a
systematic training procedure [52]. ANN modelling
has been applied to maximize lipid from Chlorella
vulgaris [53], optimize Euglena sp. growth [54] and in-
crease Spirulina platensis productivity [55]. Morowvat
and Ghasemi [53] proved that amounts of lipid and
biomass in the ANN-optimized culture condition were
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improved up to 2.59 and 1.71 folds, as compared to its
initial values in the basic cultivation conditions. Extra
experimental study in assessing the validity of the
provided model has resulted in 98.48% and 98.33%
similarity with the predicted values. Susanna et al.
[55] stated that moderate culture density between
0.16 and 0.32 g/L of Spirulina platensis has resulted
in about 14% more productivity than maintaining the
cell density between 0.16 and 0.53 g/L or 48% more
than by daily harvest above 0.16 g/L.

A neural network can perform on problems that
have non-linear programs or relationships. Although
an element of the neural network fails, it can continue
working without any problem by their parallel nature
[56]. Neural networks, either supervised or unsuper-
vised have emerged as an important tool in various
engineering applications, especially for modelling of
non-linear systems [57]. On basis of supplied train-
ing data, the network learns the hidden relationship
between the process input and output. The trained
network then undergoes simulation to predict the
output for unknown inputs. Reinforcement learning
allows the ANN agents to automatically determine
the ideal behaviour within a specific environment.
Thus, ANN learns its behaviour based on the feed-
back from the environment. A reward feedback or
reinforcement signal is required for the network to
learn. If the problem is appropriately modelled, the
reinforcement learning algorithms can converge to
the global optimum [58].

1.5.3. Genetic algorithm (GA)
Genetic algorithm (GA) is a mathematical tech-

nique for solving a variety of optimization problems
that is based on Charles Darwin’s natural selection
theory “survival of the fittest”, where the fittest in-
dividuals are selected for reproduction to produce
offspring of the next generation [59]. Firstly, the in-
dividuals are evaluated and ranked based on fitness
value and this process is accomplished through re-
peated applications of three main genetic operators,
which are selection, crossover, and mutation [60]. As
illustrated in Fig. 3, the individuals (treatments or
media compositions) with better fitness have a higher
probability to being selected and will be combined
through crossover operator to produce new genera-
tions. These new generations will be evolving towards
an optimal solution, for instance, in tissue culture,
the purpose of achieving optimal media composition
is to increase biomass yield of cultured cells [61].
After several generations, the diversity of population
may decline, as the fittest individuals possessed the
highest probability of being selected causing the so-
lutions to be similar across the generations. During
this period, mutation mechanism is implied to induce

Fig. 3. Flowchart of genetic algorithm (GA) [61].

diversity into the population and avoid stagnation
[62].

GA has also been utilized to optimize the growth
of microalgae Nannochloropsis gaditana [63] and di-
noflagellate microalgae Karlodinium veneficum [64].
Camacho-Rodríguez et al. [63] study was focusing
on optimizing the medium formulation for N. gadi-
tana growth with the prospect of maximizing both
biomass and eicosapentaenoic acid (EPA) productiv-
ities while reducing the culture medium cost. The
highest biomass yield was obtained by formulated
medium (G8) by GA and the recorded reading for
EPA production by G8 was 33 percent higher than
the EPA production obtained using a commercial
formulation of ALGAL [64]. The study also high-
lighted on optimization of culture conditions for the
dinoflagellate microalga K. veneficum. These microal-
gae were grown in a bubble column photobioreactor
using the GA-based experimental optimization with
biomass productivity as a primary objective. The best
growth condition for this dinoflagellate microalgae
was found at gas flow rates of less than 0.26 L min−1,
culture heights of more than 1.25 meter and a nozzle
diameter of 1.5 millimetre.

Other findings by Kumar et al. [65] has adopted
five-level-five-factor central composite design (CCD)
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Table 1. Microalgae culture with its respective optimization tech-
nique.

Species Technique References

Nannochloropsis gaditana GA [63]
Karlodinium veneficum GA [64]
Dunaliella tertiolecta GA, RSM [65]
Tetraselmis suecica RSM [46]
Chlorella sp. RSM [66]
Chlorella vulgaris ANN [53]
Spirulina platensis ANN [55]
Euglena sp. ANN [54]

assisted response surface methodology (RSM) to
achieve optimal cultivation of Dunaliella tertiolecta.
Results obtained from this technique were compared
with simple non-dominated sorting GA as to select the
best variables in maximizing both biomass and lipid
production. A significant improvement in biomass
productivity and lipid accumulation were obtained
with simple GA over RSM oriented optimization tech-
nique. The increments were recorded by 4.4% and
1.8% for biomass productivity and lipid accumulation
respectively. Hence, GA technique is advantageous
as it provides a simplified method that suitable for
optimization of a relatively large number of medium
components for non-model organisms with unknown
nutrient requirements. GA approach in medium op-
timization can also be implied for other species cell
cultures and may be useful in the future prospect to
increase productivity of both biomass and bioactive
compounds of interest. Table 1 shows some studies
that used different media optimization techniques for
enhancement microalgae culture.

1.6. Problem and future prospects in media
optimization

Advanced technology in medium optimization has
proven evidence about its capability to enhance both
biomass yield and desired secondary metabolites ac-
cumulation from microalgae and other diversity. The
efficiency of this technique in selecting the best
nutrient combination will greatly reduce both fer-
mentation production cost and time [66]. However,
every technique responsible for medium optimization
is constrained by some limitations. For instance, GA
technique does not always result in a global opti-
mum all the time specifically when the overall so
[67], where GA are heuristic algorithms that pro-
vide satisfactory results but may not always achieve
the optimal solution. This attribute stems from their
dependence on probabilistic mechanisms and the dif-
ficulty of achieving a balance between exploration
and exploitation. There are many techniques that may

be used to improve the performance of GAs. However,
due to the fundamental structure of the algorithm,
there will always be some level of uncertainty in
finding the best possible solution [75].

In ANN, the quality of the input data for training
decides the quality of the output data, thus, proper
training is necessary in order to operate the system
efficiently [68]. The purpose of culturing a specific
microorganism is primarily to obtain its biomass
and secondary metabolite production [69]. Hence,
researchers have applied a variety of alternatives
to accomplishing this target. Nonetheless, every mi-
croorganism has their own limitation at both genetic
and enzymatic levels [70]. Altering the micronutrient
and culture condition may increase the productivity
of metabolites but it will reach a certain saturation
point where further alteration will result in no posi-
tive impact [71]. Thus, genetic manipulation can be
one of the alternatives to increase the productivity of
the organism [72]. In fact, more study is needed to
elucidate the complete pathways of stress perception
and signal transduction in specific species of microal-
gae as to allow an efficient optimization of culture
conditions [73]. Future research should swift the pur-
pose of cultivating microalgae from anthropocentric
to ecocentric. If major microalgae culture project is
mainly focusing on carbon sequestration and shifting
the utilization of fossil fuels to biofuels, the proba-
bility for climate changes and global warming to be
reduced is promising.

2. Conclusion

The culture’s media play crucial role in microalgae
growth. Therefore, it’s important to make deep vision
about the different techniques that can improve the
culture media. The different optimisation techniques
for microalgae culture presented in this review and
the comparison between the traditional and mod-
ern has been explained, where can this technique
used to increase the yield of biomass as well as save
time to get maximum quantities within short time.
The limitations of OFAT experiments which are time-
consuming, burdensome for some experiments with
large number of components that need to be opti-
mized, and the difficulty to estimate the interaction
between multiple components of the media, resulting
the researchers to opt out to a much more advanced
techniques like RSM, ANN and GA that gives much
better result in cultivating microalgae and easier to
work with. Based on the review, we can conclude
that there is a technology advancement in cultivating
microalgae biomass based on the traditional OFAT
technique and advanced techniques.
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