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ABSTRACT

Food poisoning caused by foodborne microorganisms is a significant public health concern. This study aims to inves-
tigate the impact of several nutritional and environmental parameters on the growth of Escherichia coli, Bacillus subtilis,
Staphylococcus aureus, and Streptococc pyogenes in both model systems and food. The specific impact of temperature,
pH, and UV light stress on pathogens. Applying physical stress on microorganisms is a standard method to induce cell
inactivation and promote food stability. This study found that the optimal temperature for the growth of these pathogens
is between 30◦C and 50◦C. No growth was observed beyond 50◦C, indicating temperature sensitivity; low temperatures
between −20◦C and 4◦C did not allow bacterial growth within 24 h. The pH study demonstrated that these pathogens
grow best at pH 7, indicating the importance of environmental pH conditions for bacterial proliferation. Moreover,
exposure to UV light led to significant bacterial cell death and DNA damage, highlighting the potential of UV light as
a microbial control method. These findings help understand how physiological stress factors impact the growth and
survival of foodborne pathogens, providing insights into food safety and public health strategies.
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1. Introduction

Food poisoning occurs when water and various
types of food get contaminated with infectious mi-
croorganisms, poisons, and chemicals [1]. Food
poisoning involves identifying acute illness with gas-
trointestinal or neurological symptoms affecting two
or more individuals who shared a meal within 72 h
[2, 3]. Environmental stress impacts bacteria at

molecular and cellular levels, influencing growth and
survival [4, 5]. Bacterial growth thrives within spe-
cific temperature and pH ranges [6, 7]. Ultraviolet
radiation is effective against various microorgan-
isms [8]. Bacteria in diverse ecosystems confront
persistent challenges, necessitating adaptation to
fluctuating nutrient availability and stressors [9, 10].
The selection of temperature, pH, and UV radiation as
factors affecting bacterial growth is justified due to

Received 25 April 2024; accepted 1 July 2024.
Available online 2 August 2024

* Corresponding author.
E-mail address: alabeed119@gmail.com (A. A. A. Allaq).

https://doi.org/10.70176/3007-973X.1007
3007-973X/© 2024 Al-Ayen Iraqi University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://orcid.org/0000-0003-2031-8780
mailto:alabeed119@gmail.com
https://doi.org/10.70176/3007-973X.1007
http://creativecommons.org/licenses/by-nc-nd/4.0/


AUIQ COMPLEMENTARY BIOLOGICAL SYSTEM 1 (2024) 70–76 71

their significant impact on bacterial physiology and
survival [11, 12].

Heat treatment is a crucial method for controlling
bacterial growth in various settings, including food
safety and medical applications [13]. One study has
demonstrated that exposing bacteria to high temper-
atures can effectively reduce or eliminate pathogenic
microorganisms, thereby enhancing food safety and
preventing infections [14].

Microorganisms exhibit diverse adaptations to pH,
which is crucial for their growth and survival. Aci-
dophiles thrive optimally at pH 1.0 to 5.5 [15].
Bacteria typically favor pH values of 4 to 8 [16].
Though slowed, microbial growth under low pH
conditions remains metabolically active [17]. Staphy-
lococcus aureus (S. aureus) can thrive in diverse food
matrices due to its pH and salt tolerance [18, 19].
Enterotoxin production in S. aureus is pH-dependent,
with optimal conditions between pH 4.5 and 9.6
[20]. Esherichia coli (E. coli) shows optimal survival
at pH levels below neutral, with varying heat resis-
tance depending on pH conditions [18, 21]. Notably,
E. coli, Bacillus subtilis (B. subtilis) and Streptococcus
pyogenes (S. pyogenes) exhibit cytoplasmic pH home-
ostasis across a wide external pH range [22, 23].
Comprehending how microbial physiology responds
to pH is crucial to ensuring food safety and optimizing
industrial processes [24].

Following the cold shock, bacterial growth signifi-
cantly decelerates due to inhibited cellular processes
at low temperatures [25]. However, specific genes are
activated by temperature downshift, which is pivotal
for cold shock response (CSR) and adaptation [26].
Bacterial growth post-cold shock exhibits variations
across species and conditions [27, 28].

Recently investigated the efficacy of ultraviolet
(UV) light in deactivating bacterial spores critical for
food preservation [29], one study evaluated how the
absorbance properties of treatment media influenced
UV lethality and explored the synergistic effects of UV
light combined with mild heating [30].

Due to the vital importance of this topic, this study
assesses the susceptibility of E. coli, S. aureus, S. pyo-
genes, and B. subtilis to physiological stressors such as
low and high tempretures, pH, and UV light.

2. Methodology

2.1. Culture media and chemical materials

Luria Broth (LB) (Merck, Germany), and Mueller
Hinton (MH) broth (Sigma-Alorich, USA) were used.
Both media were supplemented with Agar-agar
(Merck, Germany), the media were prepared accord-
ing to instructions of manufacture company. Addi-

tionally, Sodium hydroxide (NaOH) (Sigma-Alorich,
USA) hydrochloric acid (HCl) (Merck, Germany),
were used to alkali and acidify the medium.

2.2. Bacterial cultivation

The Gram-negative bacterial culture of E. coli and
the Gram-positive bacterial cultures of B. subtilis, S.
aureus, and S. pyogenes were utilized. These cultures
were maintained at the Malaysia University of Sci-
ence and Technology (MUST). The mother cultures
were thawed by incubating them at 37◦C for 24 h.
S. aureus and E. coli were cultivated using MH agar.
In contrast, S. pyogenes and B. subtilis were cultivated
using LB agar [31].

2.3. The parameters

2.3.1. Heat treatment
Bacterial cultures were grown in 50 mL of broth

(LB and MH) at 37◦C for 24 h. After incubation, each
culture were diluted to 10−6 and 0.1 mL spreaded
onto agar plates. The plates were then incubated at
various temperatures (30◦C, 37◦C, 50◦C, and 80◦C)
for 24 h.

2.3.2. Cold treatment
Cold treatment was conducted following the pro-

tocol outlined by Lee [26]. Bacterial cultures were
grown in 50 mL of broth (LB and MH) at 37◦C for 24 h.
After incubation, 1 mL of the bacterial culture were
diluted to 10−6 before spreading 0.1 mL onto agar
plates. The plates were then incubated at different
temperatures (4◦C, 0◦C, −4◦C, and −20◦C) for 24 h.

2.3.3. pH treatment
The pH treatment procedure followed method de-

scribed by Eschlbeck [16]. Bacterial cultures were
grown in 50 mL of broth (LB and MH) at 37◦C for
24 h. Subsequently, 1 mL of each bacterial culture
was diluted to 10−6 mL, and then 0.1 mL spreaded
onto agar plates. The agar plates were adjusted to pH
2 with HCl and pH 10 with NaOH, while another set of
plates was maintained at pH 7 as a control. All plates
were incubated for 24 h at 37◦C.

2.3.4. UV treatment
UV treatment was conducted following the proto-

cols outlined by Kodoth [29]. Bacterial cultures were
grown in 50 mL of broth (LB and MH) at 37◦C for
24 h. Subsequently, 1 mL of bacterial culture was
diluted to 10−6 mL, and then 0.1 mL spreaded onto
agar plates. The agar plates were exposed to UV light
for 6, 12, and 24 h [30]. This method evaluates the
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effectiveness of UV light exposure on bacterial growth
inhibition over varying durations.

2.3.5. Colony Forming Unites (CFU) count
Each bacterial species was cultured on three agar

plates per treatment, and the number of growth
colonies was counted. The average colony count per
agar plate was calculated for each treatment. This
approach ensures an accurate assessment of bacterial
growth under different experimental conditions [32].

2.3.6. Statistical analysis
The data were presented as mean ± standard devia-

tion. To determine statistical significance, a one-way
analysis of variance (ANOVA) was conducted on the
replicates, with a p-value of ≤ 0.05 being considered
significant.

3. Results

An adequate understanding of the factors that
influence the growth of foodborne pathogens in
foods would offer significant advantages by coor-
dinated approach to preservation the foods against
pathogenicity of foodborn bacteria.

3.1. Heat treatment

The colonies grown of E. coli, B. subtilis, S. aureus,
and S. pyogeneswas assessed under varying heat stress
conditions. All bacterial strains exhibited growth at
30◦C for 24 h (Fig. 1). Optimal growth occurred at
37◦C (Fig. 1), reflecting typical body temperature
conditions conducive to bacterial growth [33]. How-
ever, no bacterial growth was observed at 50◦C and
80◦C.

Fig. 1. Effect of heat treatment on the growth of E. coli, B. subtilis,
S.aureus, and S.pyogenes.

Fig. 2. Effect of cold treatment on the growth E. coli, B. subtilis, S.
aureus, and S.pyogenes.

3.2. Cold treatment

The colonies grown of E. coli, B. subtilis, S. aureus,
and S. pyogenes under different cold stress conditions
were examined. Fig. 2 illustrates no growth at tem-
peratures of −20◦C, −4◦C, 0◦C, and 4◦C at all.

3.3. pH treatment

The effect of pH stress on the growth of E. coli,
B. subtilis, S. aureus, and S. pyogenes bacteria was
evaluated across three pH levels: pH 2, pH 7, and pH
10. Fig. 3 demonstrates growth at pH 7 only and no
growth at pH 2 and 10.

3.4. UV treatment

The bacterial cultures of E. coli, B. subtilis, S. aureus
and S. pyogenes were exposed to UV for time duration
of 12 and 24 h. The colonies number drops under UV,
as shown in (Fig. 4).

Fig. 3. Effect of pH treatment on growth E.coli,B.subtilis, S.aureus,
and S.pyogenes.
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Fig. 4. Effect of UV treatment on growth E.coli,B.subtilis, S.aureus,
and S.pyogenes.

4. Discussion

Environmental changes profoundly affect bacterial
growth and survival, prompting a stress response.
This adaptive mechanism involves gene regulation
and protein activity, supporting cellular defense and
homeostasis restoration. Additionally, it enhances
resistance against diverse environmental stresses, a
phenomenon known as cross-protection [34].

4.1. Effect of temperature on bacterial growth

E. coli optimally grows at 37◦C and are thermal gen-
eralist within their growth spectrum. It can be rapidly
evolved to be adapted to higher temperatures such as
42◦C. E. coli has an extensive temperature range for
growth, from 8◦C to 49◦C, with an optimum of 37◦C
[35]. Increasing the temperature above 40◦C or below
20◦C results in a progressively slower growth rate
until the growth stops at the determined temperature
of 49◦C, or the minimum of 8◦C. Previous study has
shown that a rapid transfer of an exponential culture
of the mesophilic E. coli from a temperature within
the regular physiological range (i.e., from approxi-
mately 20◦C to 38◦C) to temperatures below 20◦C
has induced a cold shock response. E. coli SUBE01
lost viability upon heat shock and another remarkable
aspect was to evaluate the possible positive effect on
the high temperature stressed E. coli SUBE01 growth
at critical (45◦C) and above critical (47◦C) [36].

A study examined E. coli growth in three differ-
ent media (nutrient, Luria-Bertani (LB), and minimal
agar) at varying temperatures. Optimal growth oc-
curred at 37◦C across all media. In comparison,
growth was inhibited at 45◦C, evidenced by lower
OD600 and colony numbers, potentially due to reac-
tive oxygen species [37]. Bacillus subtilis exhibited

growth after 24 h of incubation at 37◦C and 40◦C,
but no growth was observed at 50◦C and 80◦C. These
findings align with studies by El-Gayar [38], that
investigated the impact of temperature on cell mor-
phology, staining behavior, and growth rate. Previous
report indicates that transferring growing cultures
of B. subtilis from 37◦C to 15◦C results in increased
optical density and viable count, with cells regain-
ing typical morphology, suggesting recovery from
thermal stress. Subcultures of these recovered cells
continue to grow well at 15◦C. In contrast, cultures
transferred to 12◦C show growth. However, without
recovery from stress, cultures previously at 15◦C still
grow at 12◦C without structural alterations seen in
cells with a 37◦C history [39]. Another study found
that Bacillus spp. grown at 48–53◦C produced up to
102 CFU/mL, eliminating turbidity and CFUs at 54◦C,
indicating a critical temperature threshold of 53◦C
[36].
S. aureus displays a broad temperature range for

growth (6.5–46◦C), with optimal growth occurring
between 30–37◦C, and can survive briefly at extreme
temperatures (<6.5◦C, >46◦C) [31, 40].
S. pyogenic virulence factor expression is influenced

by various factors, including osmolality, tempera-
ture, pH, and growth medium, with pre-warming the
medium to 37◦C recommended for optimal growth
[41]. S. pyogenes can resist temperatures up to 50◦C
for 30 min but is susceptible to 55◦C thermal stress
[41].

4.2. Effect of pH on bacterial growth

In one study, E. coli exhibited optimal growth at pH
values between 4.6 and 9.5, with the highest growth
rates observed within the pH 5.5 to 7.5. Notably, E.
coli demonstrated remarkable survival even after ex-
posure to pH 2.5 for extended periods [21]. This acid
tolerance is attributed to evolutionary adaptations, as
evidenced by E. coli’s ability to thrive in highly acidic
environments such as the stomach [16]. B. subtilis,
similarly, displays a broad pH tolerance, maintaining
cytoplasmic pH stability within a narrow range (pH
7.3 to 7.6) across environmental pH levels ranging
from 6.0 to 9.0. Under acidic conditions, B. subtilis
exhibits an acid tolerance response, inducing proteins
that enhance survival in extreme acidity [42].

The growth characteristics of S. aureus are influ-
enced by pH and temperature interactions. S. aureus
exhibits an optimal growth pH of 6.5, with growth in-
hibition observed at a pH above 7.5 [43]. Acid stress
significantly impacts S. aureus viability, as demon-
strated by its sensitivity to pH 3.5 [44].
S. pyogenes, commonly found in the oral cav-

ity and pharynx, exhibit limited tolerance to acidic
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environments, rendering it susceptible to acid stress
[45]. This sensitivity underscores the ecological niche
preferences of S. pyogenes, which rarely encoun-
ters highly acidic conditions in its natural habitats
[46, 47]. These findings emphasize bacteria’s diverse
adaptive strategies to thrive under varying pH con-
ditions [48]. Acid tolerance mechanisms, such as
regulatory gene networks and protein adaptations,
play crucial roles in bacterial survival and growth
in acidic environments [49]. Understanding these
adaptive responses is vital for elucidating bacterial
pathogenesis and designing targeted interventions to
combat bacterial infections [50, 51].

4.3. Effect of UV on bacterial growth

UV radiation is known to kill bacteria by disrupting
their genetic material. This inhibits their growth and
reproduction, making UV radiation an effective tool
in the disinfection process. Its antimicrobial effect is
primarily due to the way it affects the pyrimidine
bases of microbial nucleic acids. A study conducted
on E. coli found that even after a 99.9% inactiva-
tion by UV irradiation, exposure to fluorescent light
induced pyrimidine dimers in DNA. This highlights
the effectiveness of UV radiation in preventing the
growth and spread of harmful microorganisms. All
bacteria were killed in 24 h under UV. UV radiation
to produce a spectrum of radiation is used in the
disinfection process [34].

The effectiveness of UV radiation against B. sub-
tilis spores was assessed by Taylor et al. [52] across
different wavelengths (172 nm, 222 nm, and 254
nm), resulting in a 2-log reduction of spores. In the
“ADAPT” space experiment, shielding demonstrated
protection against extraterrestrial UV radiation, lim-
iting survival chances of even highly UV-resistant
strains of B. subtilis in outer space [53].

Previous research exposed MRSA to UV radiation
for varying durations (5 to 30 sec), with longer
exposure times correlating with increased growth
inhibition, peaking at 30 sec [54]. UV radiation
was toxic to multidrug-resistant bacteria, although
surviving colonies retained their resistance traits
[55]. Some strains of S. aureus showed sunlight
sensitivity dependent on the growth phase, with ex-
ponentially growing cells exhibiting higher sensitivity
[56].

UVC doses ranging from 5 to 15 sec suppressed
microbial growth on agar, with varying responses
among different bacterial species [57]. S. pyogenes
was notably less resistant to prolonged UV exposure
than E. coli [58]. UV is considered from the appli-
cations that aim to control microbial growth and
disinfection [55].

5. Conclusion

This work has demonstrated that growth by S. au-
reus, S. pyogenes, B. subtilis and E. coli is influenced
by various environmental and nutritional factors, in-
cluding temperature, pH and UV. The influence of
incubation temperature ranges from −20◦C to 80◦C
for 24 h and affects different pH (2, 7 and 10) and
UV light at different times (6, 12 and 24 h). The
idea is determining how the microorganism behave
in food. Suggestions suggest that additional primary
and interactive effects must be characterised in var-
ious foods. Adequate characterisation of the factors
influencing S. aureus, S. pyogenes, B. subtilis and E.
coli growth in foods should then allow a more ratio-
nal means of modifying formulation and processing
parameters better to protect consumers from the po-
tential for food poisoning. Identifying interactions
between the various factors affecting the bacteria is of
particular interest. This would optimise anti-bacterial
activity by manipulating multiple environmental and
nutritional parameters. In this manner, the microbio-
logical safety of specific foods can be more accurately
predicted, thereby allowing a more rational means
of optimising both safety and production consider-
ations. Hopefully, future research will be directed
towards determining the various primary and inter-
active effects that can be manipulated to control S.
aureus, S. pyogenes, B. subtilis and E. coli on other
pathogens in foods.
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